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ΛCDM paradigm
In the standard theoretical framework for structure formation, the Universe is

dominated by a cosmological constant and cold, collisionless dark matter.

Small density perturbations grow via
gravitational instability, forming bound
structures
−→ DM halos

Galaxies form hierarchically, with
low-mass halos collapsing earlier and
merging to form larger and larger
systems over time

The galaxies are embedded in massive,
extended DM halos teeming with
self-bound substructure −→ subhalos
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Dark Matter detection

A good candidate for dark matter is a weakly interacting massive

particle(WIMP), with mass lying from the GeV to the TeV scale.

Direct detection: The WIMPs that pass
through the Earth can be detected by
their interaction with matter. The
experiments measure the recoil energy of
nuclei produced by dark matter
scattering.

Indirect detection: The way to indirectly
detect DM is via annihilations

annihilations

or decay
products as gamma-rays, antimatter and
neutrinos.

Collider experiments: produce dark matter
particles from the collision of SM paticles.
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Indirect detection:

Signals are expected from the center of the our galaxy, the whole halo,
halo substructure, dwarf galaxies, other astrophysical object such as Sun,
etc.
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Subhalos:

Diemand et al. 2008 - The Via Lactea Project

GOOD TARGETS: Both dwarfs and dark satellites are
highly DM-dominated systems

SUBSTRUCTURE BOOSTS: Subhalos may play a crucial
role in DM detection
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The estimate of the diffuse extragalactic flux of neutrinos of flavour α due to
dark matter annihilations:

dφνα
dE0

=
ρ2m,0

2

∫
dz

H (z )
ξ2(z )︸ ︷︷ ︸

〈συ〉
m2

DM

∑
β,i

|Uα,i |2 |Uβ,i |2
∑
j

Brj
dNνβ ,j (E0(1 + z ))

dE︸ ︷︷ ︸ ,
astrophysics particle physics

with,
〈συ〉: the annihilation cross section multiplied by velocity,

dNνβ,j

dE
: the differential energy spectrum for the number

of neutrinos of flavour β at emission,

Brj : branching ratio of channel j , U : the leptonic mixing matrix,

ρm,0: the dark matter background density, E = E0(1 + z )

H (z ) = H0

√
ΩM (1 + z )3 + ΩΛ, H0: the Hubble constant,

ξ2(z ): the enhancement of the annihilation signal arising due
to the clustering of DM into halos and subhalos.
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ξ2(z ) description:

ξ2(z ) =
∆(z ) ρc(z )

ρm,0

∫
Mmin

dM
M

ρm,0

dn(M , z )

dM

∫
dc P(c) ξ2

M(M , c; z )

ξ2
M (M , z ) gives the average enhancement in the flux due to a generic halo

ξ2
M(M , c; z ) ∝

∫
4πr2ρ2(r ;M , c) dr

(
∫

4πr2ρ(r ;M , c) dr)2
,

c: the concentration parameter, P(c): the distribution of concentration parameters

c(M , z ) =
r∆

rs
; ρNFW(r/rs) =

ρs
r/rs(1 + r/rs)2

, rs : scale radius

DM halo at redshift z is characterized by one parameter ∆:

M =
4π

3
∆ ρ̄(z )r3

∆; ∆ = cte or ∆ = ∆vir (z ) .

∆: the overdensity with respect to the mean density of the universe, ρ̄(z ).

Cirelli et al., 2012
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The presence of substructure could produce an enhancement (or boost) over

the expected signal from the smooth distribution of DM in the host halo

ξ2(z ) =
∆(z ) ρc(z )

ρm,0

∫
Mmin

dM
M

ρm,0

dn(M , z )

dM
[1 + B(M )] ξ2

M(M , c; z )

DM annihilation boost factor from substructure

B(M ) =
4πR3

vir

Lsmooth(M )

∫ M

Mmin

∫ 1

0

dn(m, xsub)

dm
L(m, xsub) x2

subdxsub dm

Subhalo luminosity

L(m, xsub) ≡
∫ Rsub

0
ρ2

sub(r) 4π r2 dr , xsub =
Rsub

R∆

∝ ρ2
s r

3
s ∝ m

c3(m, xsub)

f 2 (c(m, xsub))

−→ very sensitive to subhalo concentration!

f (c) = ln(1 + c)− c/(1 + c)

dn/dm ∝ (m/M )−α: subhalo mass function
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(Sub)halo internal structure: The Concentration Parameter

chalo 6= csubhalo (?)
c∆

Sánchez-Conde & Prada, 2014

c∆ =
Rvir

rs
(NFW)

rs : scale radius
Rvir: virial radius

Mvir =
4π

3
∆ ρ̄(z)R

3
vir

∆: overdensity with respect
to the mean density of the
universe

cV

cV =
ρ̄(Rmax)

ρc
= 2

(
Vmax

H0Rmax

)2

Rmax: radius of peak circular velocity
Vmax: maximum circular velocity

⇒ more robust definition for
subhalos
⇒ independent of a density
profile

cV - c∆

cV =
( c∆

2.163

)3 f (Rmax/rs)

f (c∆)
∆ , m∆ =

f (c∆)

f (2.163)

Rmax V 2
max

G
.

Sánchez-Conde & Prada, 2014
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Our work
Simulations

J. Diemand et al., 2008 (VL II)
S. Garrison-Kimmel et al., 2014 (ELVIS)

Anatoly Klypin et al. (BolshoiP)

Ishiyama 2014
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VL-II

J. Diemand et al., 2008

Via Lactea simulations follow the formation and evolution of a
Milky-Way-size halo.

VL-II employs just over one billion 4100 M� particles to model the
formation of a M200=1.93 x 1012 M� halo and its substructure.

Resolve about 53000 individual subhalos within the host halo’s r200=402 kpc

VL-II adopted ΛCDM parameters from the WMAP 3 year data release.
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We have obtained the medians of cV and c200 in three radial bins
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Results - VL II
c v
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Bin 1: 182 sub, Bin 2: 2156 sub, Bin 3: 4576 sub, C B: 218 sub.

Only subhalos larger than

Vmax =3 km s−1 are
included

We have obtained the medians
of cV and c200 in three radial
bins

We have considered a
calibration bin to compare the
halos with subhalos
concentrations

A calibration bin has been
included beyond Rvir to
estimate field halo
concentrations using the same
simulation

Median subhalo concentration
increases towards the halo
center for subhalos of the same
mass

Subhalo concentrations are
signifcantly larger than those of
field halos
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ELVIS: Exploring the Local Volume in Simulations
S. Garrison-Kimmel et al., 2014

ELVIS is a set of high-resolution simulations that model the Local Group

The suite contains 48 Galaxy-size haloes and three halos of higher
resolution, each within volumes that span 2-5 Mpc in size with particle mass
mp=1.9 x 105 M�

Half of the Galaxy haloes are in paired configurations, the other half haloes
are isolated, mass-matched analogs

ELVIS has adopted WMAP 7 cosmological parameters.

Thelma (Bottom) & Louise (Top)
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Results - ELVIS
c v
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We create a single simulation
data set containing both the
48 halos and the 3 with
higher resolution

For the suit of the high
resolution halos, only subhalos
larger than Vmax = 5 km

s−1 are included and for the
other 48 halos we consider all
data provided by the
simulation ( Vmax > 8 km

s−1).

We implemented three radial
bins and a calibration bin, as
it was done with VL-II

We have obtained median
subhalo concentrations in
three radial bins

Median subhalo concentration
increases towards the halo
center for subhalos of the
same mass

Subhalo concentrations are
signifcantly larger than those
of field halos

Bin 1: 86 sub, Bin 2: 4442 sub, Bin 3: 17592 sub, C B: 5282 sub.
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Results - Parametrizations for the median subhalo concentrations
c v
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Good agreement between VL-II and ELVIS except in
the innermost regions

cV(Vmax, xsub) = c0

1 +
3∑

i=1

[
ai log

(
Vmax

10 km/s

)]i˙

[1 + b log (xsub)]

c200(m200, xsub) = c0

1 +
3∑

i=1

[
ai log

(
m200

108h−1M�

)]i˙

[1 + b log (xsub)]

Field halo concentrations agree well with expectations.
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Scatter of the c200 concentration parameter: log-normal distribution
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Results - Boost

Subhalos suffer from
tidal forces

within their host halos −→ are expected to be truncated at some radius rt < r∆

↘
subhalo luminosity must be truncated at rt
instead of r∆
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Summary

Study subhalo properties as a function of the distance to the host halo
center and subhalo mass

Used a concentration parameter independent of a density profile (cV)

Subhalo concentration increases towards the halo center for subhalos of the
same mass and are significantly larger than those of field halos

Provide a set of fits that, including both mass and radial dependences,
accurately describe the subhalo structure and its role on the search for DM
via its annihilation products

Improved the model in Sánchez-Conde and Prada (2014).

In order to improve these analysis, it exists a clear need to have more
information about the properties of halos and subhalos in a larger range of
mass and redshifts

Thank you
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Ángeles Moliné MultiDark Galaxies Workshop September 27, 2016 19 / 19


