Study of the Mass-Metallicity Relation in Galaxies MultiDark Galaxies Workshop

Florencia Collacchioni

SAG Team: Sofía Cora, Cristian Vega, Ignacio Gargiulo, Tomás Hough (IALP, Argentina), Andrés Ruiz (IATE, Argentina), Nelson Padilla, Alejandra Muñoz Arancibia (PUC, Chile), Alvaro Orsi (CEFCA, España).

September 28, 2016

Introduction

- Correlation between gas-phase oxygen abundance and M_{*}.
- At a fixed M_{*}, galaxies with higher SFR have lower metallicities.
- Information of SF histories and different processes affecting gas evolution.

Mannucci+(2010)

Introduction

Explanations?

- Ejection of metal-rich gas \propto SFR/M_{*}.
- Infall of metal-poor gas.
- Downsizing → peak of SFR relates with metallicity.

Mannucci+(2010)

The Fundamental Metallicity Relation (FMR)

- Surface of M_{*}-SFR-Metallicity.
- Minimizes the scatter of metallicity.
- No evidence of evolution up to $z \sim 2.5$.
- Not so fundamental?
 ⇒ M_{*}-HI-Metallicity (Bothwell et al. 2011;2013)

Fundamental Metallicity Relation (FMR)

Results

MultiDark Simulation + SAG

Main Sequence of Galaxies

Model agrees with observations at z = 0.

F. Collacchioni (SAG)

MultiDark Galaxies Workshop

September 28, 2016 7 / 21

Main Sequence of Galaxies: higher z

F. Collacchioni (SAG)

Main Sequence of Galaxies: Evolution

At fixed M_{\star} galaxies have higher SFR with higher redshift.

F. Collacchioni (SAG)

MultiDark Galaxies Workshop

Cosmic Star Formation Rate

- Model agrees with observations, except at low redshift (mild excess).
- SFR quiescent is dominant process.

Cosmic Star Formation Rate

- Model agrees with observations, except at low redshift (mild excess).
- SFR quiescent is dominant process.
- Downsizing is observed.

Projection of the FMR: z = 0

$$12 + \log(\mathrm{O/H}) = \begin{cases} 8.90 + 0.47 \,(\mu_{0.32} - 10) & \mu_{0.32} < 10.5 \\ 9.07 & \mu_{0.32} \ge 10.5 \end{cases}$$

Projection of the FMR: higher z

F. Collacchioni (SAG)

Projection of the FMR: Evolution

F. Collacchioni (SAG)

MultiDark Galaxies Workshop

Mass-Metallicity Relation: z = 0

- Steeper slope than observed.
- For galaxies with high M_{\star} , the relation does not flatten.
- General behaviour: the model agrees with observations at z = 0.

Mass-Metallicity Relation: higher z

F. Collacchioni (SAG)

Mass-Metallicity Relation: Evolution

Evolution observed!!

F. Collacchioni (SAG)

MultiDark Galaxies Workshop

September 28, 2016 1

16 / 21

MZR: bin SFR

SFR not enough to justify the scatter.

F. Collacchioni (SAG)

MultiDark Galaxies Workshop

Gas Fraction

- At z = 0 the model agrees with observations from Bosseli et al. (2014).
- At fixed M_{*}, the M_{gas} increases with redshift.

Gas Fraction

- At fixed redshift, gas fraction increases with the decrease of M_{\star} .
- The decrease of the f_{gas} with the redshift for intermediate masses is not as pronounced as that observed by Troncoso et al. (2014).

Future Work

- Study of the processes responsable of the mild evoltion at the MZR observed.
- Implementation of modifications in the prescription of physical processes in order to recover the correct slope of the MZR at z = 0 and an evolutionary trend in better agreement with observations.
- Continue studying the MZR with other SAM and Hydrodynamical Simulations.
- Try to understand what is causing the scatter of the MZR.
- Suggestions are welcome.

