PARTI:

The Universe in the Cloud

Darren Croton Centre for Astrophysics and Supercomputing Swinburne University <u>dcroton@astro.swin.edu.au</u>

Let's recap...

The skeleton

The flesh

z=0 dark matter

125 Mpc/h

Schmidt law star formation

- SFR dependent SN winds
- satellite gas stripping
- morphological transformation
- assembly through mergers
- starbursts through mergers
- Magorrian relation BH growth
- jet & bubble AGN feedback

Croton et al. 2016

Remember:

+

Numerical Simulation

Analytic Simulation

z=0 dark matter

125 Mpc/h

z=0 galaxy light

Physical consequences

\$300 Z=1 \$500 Z=2 \$1000 Z=3

000

(090°)

....

62003

Understanding the limitations of the models

Semi-analytics (mostly) assume:

- the cosmology is correct
- Iocal correlations extend to higher redshift
- the baryon fraction is universal
- halo properties determine galaxy properties

Semi-analytics are at the mercy of:

the IMF

- stellar population models
- the quality of constraining observations
- the quality of the underlying simulation

The exact values of the parameter choices are (mostly) meaningless

Our model is only as good as the questions we ask

For systems with infinite levels of complexity, our model can never be "correct"

What can semi-analytics actually tell us about galaxy formation?

Example 1: Void galaxies

and a tar set of the

Croton & Farrar (2008) 10^{-2} void environments by colour red galaxies blue galaxies centrals only 0^{-3} ↓ (h³Mpc⁻³mag⁻¹ 10 10^{-5} Croton et al. (2005) late-type 10^{-6} -18 -19 -20 -17 -21 $M_{hJ} - 5\log_{10}h$

The Millennium Simulation semi-analytic galaxy formation model

So what's special about early-type void galaxies?

Croton & Farrar (2008)

Halo mass function in different environments

Example 2:

BH growth mergers or secular?

Merger driven growth

During the merger some fraction of the cold gas is driven onto the black hole

$\Delta m_{\rm BH} \sim 0.03 \ m_{\rm R} \ m_{\rm cold}$

black hole-bulge

merger driven growth

Secular driven growth

As the stellar disk becomes unstable, some fraction of the cold gas is dragged inward to accrete onto the black hole

$\Delta m_{\rm BH} \sim 0.01 \ m_{\rm cold}$

luminosity function

environment LFs

Example 3:

Evolution in the mBH-mbulge relation

Can we isolate the source of this evolution? (Croton 2006)

BLACK HOLE MASS

BULGE MASS

BLACK HOLE MASS

BULGE MASS

Progenitor bulges

Progenitor BHs

Cold gas accretion $(\sim m_{cold})$

Progenitor BHs

BLACK HOLE MASS

BULGE MASS

Starburst (~m_{cold})

Progenitor bulges

Disrupted disks

Madau plot: star formation increases until z~1 -> galaxy disks

LCDM: merger rate increases until low redshift disks -> bulges

Theoretical Astrophysical Observatory Bernyk, Croton et al., ApJS, 2016

https://tao.asvo.org.au

Virgo - Millennium Database

Documentation	Welcome Darren Croton. Streaming queries return unlimited number of rows in CSV format and are cancelled after 420 seconds
CREDITS/Acknowledgments	Browser queries return maximum of 1000 rows in HTML format and are cancelled after 30 seconds.
Registration	
News	
FAQ	
Public Databases DGalaxies DHalotrees Guo2010a MField MField MillenniumII miniMilII MMSnapshots MPAGalaxies MPAHaloTrees MPAMocks	Query (stream) Query (browser) Help
darren_db (rw) (context)	
	Demo queries: click a button and the query will show in the query window. Holding the mouse over the button will give a short explanation of the goal of the query. These queries are also available on this page. Mainly Halos: H1 H2 H3 H4 H5 HF1 HF2 HF3
(CVIRGO).	Mainly Galaxies: G1 G2 G3 G4 G5 G6 HG1 HG2 GF2 Metadata queries: The SQL statements under these buttons provide examples for querying and managing the state of a private database. Holding the mouse over the button will give a short explanation of the goal of the statement.
GERMAN ASTROPHYSICAL GAVO VIRTUAL DESERVATORY	ShowTables Show Views Show Columns Show Indexes MyDB Size MyDB Table Size Create View Drop Table Create Index

2000 000 800 500 600 (h 1 Mpc) Distance (h 1 Mpc) Redshift 00 .20 TAO light-cone module 0.05

TAO image module

Angular distance from Brightest Cluster Galaxy (deg)

Usage Case: The "Wide Area VISTA Extragalactic Survey" (WAVES)

- 4MOST Consortium Design Reference Survey.
- Will use the VISTA/4MOST facility to spectroscopically survey ~ 2 million galaxies.
- TAO used for predictions and to argue the science case.

- Ensemble of Milky-Way sized systems to test CDM
- The low surface brightness and dwarf domains
- The evolution of galaxy structure (with Euclid)
- The evolving HI universe (with ASKAP/SKA)

WAVES Survey

Fig. 1 A representation of the RA geometry of the WAVES survey (derived from the Theoretical Astrophysical Observatory), highlighting the complexity of structures that will be sampled.

Driver et al. 2015

Usage Case:

Cosmological-scale holes in the local Universe - (GAMA)

- There are massive regions of the Universe almost totally devoid of galaxies.
- Where do the "lost" galaxies that do live there come from?
- TAO allows access to the latest theoretical modelling.

TAO Galaxies

Purple = recent galaxy-galaxy collision

> Grey = all TAO galaxies

Penny et al. 2015

Usage Case: SDSS Cosmic conformity

 Galaxies "conform" over scales much larger than their local physics can impact. Why? (Hearin et al. 2014)

Usage Case: ASKAP Radio Surveys

How many galaxies will ASKAP see?
What kinds of galaxies? (Duffy et al. 2012)

The Australian Square Kilometre Array Pathfinder [ASKAP] radio telescope will expand our understanding of the Universe ...

git clone https://github.com/darrencroton/sage.git

byta = fubvta(++addr)

TREE FILES: http://supercomputing.swin.edu.au/data-sharingcluster/mini-millennium-simulation/