CARNEGIE ASTRONOMY

f facebook.com/CarnegieAstro
Y @CarnegieAstro
@ @ CarnegieAstro

Galacticus in the MultiDark Database

Andrew Benson

CARNEGIE
SCIENCE

The Carnegie Observatories

The Galacticus SAM

- Open source SAM
- Operates on N-body or Press-Schechter-type merger trees (or analytic MAHs, or hand-built merger trees, or halos in static universes)
- Baryonic physics modeled as network of ODEs
- Includes all the usual suspects (star formation, feedback, AGN, chemical enrichment, merging, etc.)
- Modular in nature, so easy to construct models of varying complexity

Mass Evolution

$$
\begin{aligned}
& \dot{M}_{\mathrm{v}}=+\dot{M}_{\mathrm{v}, \text { tree }} \\
& \dot{M}_{\mathrm{f}}=\quad+\dot{M}_{\text {sup }}-\dot{M}_{\text {rec }} \\
& \dot{M}_{\mathrm{h}}=\quad+\dot{M}_{\mathrm{IGM}}+\dot{M}_{\mathrm{rec}}-\dot{M}_{\mathrm{inf}}+\dot{M}_{\mathrm{inc}}-\quad \dot{M}_{\mathrm{str}} \\
& -\dot{M}_{\mathrm{inc}}+\sum \dot{M}_{\mathrm{str}}^{\prime} \quad+\sum_{i}\left(1-f_{\mathrm{str}}\right) \dot{M}_{\mathrm{out}, i}+\sum_{i} f_{\mathrm{str}}^{\prime} \dot{M}_{\mathrm{out}, i}^{\prime} \\
& +\dot{M}_{\text {inf }} \\
& -\dot{M}_{\mathrm{sf}, \mathrm{~d}}- \\
& \dot{M}_{\text {out, }} \\
& -\dot{M}_{\mathrm{sf}, \mathrm{~s}}-\quad \dot{M}_{\mathrm{out}, \mathrm{~s}} \\
& +\dot{M}_{\mathrm{sf}, \mathrm{~s}} \quad+\dot{M}_{\star, \text { ins }} \\
& \text { - } \dot{M}_{\bullet, \mathrm{acc}, \mathrm{~h}}-\dot{M}_{\bullet, \text { rdo }}, \\
& \dot{M}_{\mathrm{o}}= \\
& \dot{M}_{\mathrm{d}, \mathrm{~g}}= \\
& \dot{M}_{\mathrm{d}, \star}= \\
& \dot{M}_{\mathrm{s}, \mathrm{~g}}= \\
& \dot{M}_{\mathrm{s}, \star}= \\
& +\dot{M}_{\text {sf,d }} \\
& \dot{M}_{\bullet}= \\
& +\sum_{j} \dot{M}_{\bullet, \text { acc }, j}^{\prime}-\dot{M}_{\bullet, \mathrm{jet}} .
\end{aligned}
$$

Metal Evolution

$$
\begin{aligned}
& \dot{M}_{Z, \mathrm{~h}}=-\dot{M}_{Z, \mathrm{inf}}+\dot{M}_{Z, \mathrm{inc}}-\quad \dot{M}_{Z, \mathrm{str}} \\
& \dot{M}_{Z, \mathrm{o}}=\quad-\dot{M}_{Z, \mathrm{inc}}+\sum \dot{M}_{Z, \mathrm{str}}^{\prime} \\
& -\dot{M}_{Z, \mathrm{sf}, \mathrm{~d}}+\dot{M}_{Z, \mathrm{yld}, \mathrm{~d}}- \\
& +\dot{M}_{Z, \mathrm{sf}, \mathrm{~d}} \\
& \dot{M}_{Z, \mathrm{~d}, \star}= \\
& \dot{M}_{Z, \mathrm{~s}, \mathrm{~g}}= \\
& \dot{M}_{Z, \mathrm{~s}, \star}= \\
& -\dot{M}_{Z, \mathrm{sf}, \mathrm{~s}}+\dot{M}_{Z, \mathrm{yld}, \mathrm{~s}}- \\
& \dot{M}_{Z, \text { out,s }} \\
& \dot{M}_{Z, \text { out }, \mathrm{d}} \\
& \dot{M}_{Z, \text { out }, \mathrm{s}} \\
& +\dot{M}_{Z, \mathrm{sf}, \mathrm{~s}} \\
& -\dot{M}_{Z, \bullet, \mathrm{acc}, \mathrm{~h}}-\dot{M}_{Z, \bullet, \text { rdo }}, \\
& +\dot{M}_{Z, \bullet, \mathrm{qsr}}, \\
& \dot{M}_{Z, \mathrm{~d}, \mathrm{~g}}=+\dot{M}_{Z, \mathrm{inf}} \\
& \dot{M}_{Z, \mathrm{~d}, \star}= \\
& \dot{M}_{Z, \mathrm{~s}, \mathrm{~g}}= \\
& M_{Z, \mathrm{~s}, \star}= \\
& +\sum_{i}\left(1-f_{\mathrm{str}}\right) \dot{M}_{Z, \text { out }, i}+\sum_{i} f_{\mathrm{str}}^{\prime} \dot{M}_{Z, \text { out }, i}^{\prime} \\
& -\dot{M}_{Z, \mathrm{~g}, \mathrm{ins}} \\
& -\dot{M}_{Z, *, \text { ins }} \\
& +\dot{M}_{Z, \mathrm{~g}, \mathrm{ins}}-\dot{M}_{Z, \bullet, \mathrm{acc}, \mathrm{~s}}-\dot{M}_{Z, \bullet, \mathrm{qsr}}, \\
& +\dot{M}_{Z, \star, \text { ins }}
\end{aligned}
$$

Angular Momentum Evolution

$$
\begin{aligned}
& \dot{J}_{\mathrm{h}}=+\dot{J}_{\mathrm{IGM}}+\dot{J}_{\mathrm{rec}}-\dot{J}_{\mathrm{inf}}+\dot{J}_{\mathrm{inc}}-\dot{J}_{\mathrm{str}} \quad-\dot{J}_{\bullet, \text { acc, } \mathrm{h}}-\dot{J}_{\bullet, \text { rdo }}, \\
& \dot{J}_{\mathrm{o}}= \\
& \dot{J}_{\mathrm{d}, \mathrm{~g}}= \\
& +\dot{J}_{\text {inf }} \\
& -\dot{J}_{\text {inc }}+\sum \dot{J}_{\text {str }}^{\prime}+\sum_{i}\left(1-f_{\text {str }}\right) \dot{J}_{\text {out }, \mathrm{i}}+\sum_{i} f_{\text {str }}^{\prime} \dot{J}_{\text {out }, \mathrm{i}}^{\prime} \\
& \dot{J}_{\text {out, }} \\
& \dot{J}_{\text {out }, \mathrm{s}} \\
& -\dot{J}_{g, \text { ins }} \\
& -\dot{J}_{\star, \text { ins }} \\
& +\dot{J}_{\mathrm{g}, \mathrm{ins}}-\dot{J}_{\bullet, \mathrm{acc}, \mathrm{~s}}-\dot{J}_{\bullet, \mathrm{qsr}}, \\
& +\dot{J}_{\star \text {, ins }} \\
& +\sum_{j} \dot{a}_{\bullet, \mathrm{acc}, j}-\dot{a}_{\bullet, \text { jet }} .
\end{aligned}
$$

Calibration

- Current catalog based on "by-eye" calibrations
- Ongoing work to provide precise calibrations to key physical properties (stellar mass, HI mass, sizes, clustering)
- Careful consideration of:
- Covariances
- Systematics
- Observational biases/errors

Calibration of the Model

High-mass bins dominated by Poisson

Calibration of the Model

Calibration of the Model

Calibration of the Model

Calibration of the Model

Stellar mass function at $z \approx 4.625$

Calibration of the Model

Calibration of the Model

Future Catalogs?

- Improved calibrations
- Resolution independence?
- More observables
- AGN luminosities
- Emission lines
- IR/Sub-mm luminosities
- Rotation curves?

