Multidark Galaxies: Sampling Local Group Analogs

Christoph Behrens (IAG Goettingen, SNS Pisa)

Andrew Benson, Alexander Knebe, Francisco Prada, Noam Libeskind, Kristin Riebe, Stefan Gottlöber, and many others

SCUOLA Normale Superiore

Our neighborhood

	I_{TRGB}	$(m-M)_{\circ}$	D (kpc)		ΔD (kpc)
M31	20.54 ± 0.03	24.47 ± 0.07	785	±	25
M33	20.57 ± 0.03	24.54 ± 0.06	809	±	24
NGC 205	20.65 ± 0.03	24.58 ± 0.07	824	±	27
NGC 185	20.23 ± 0.03	23.95 ± 0.09	616	±	26
NGC 147	20.43 ± 0.04	24.15 ± 0.09	675	+	27
	20110 1 0101	21110 1 0100	010	-	2.
Pegasus	20.87 ± 0.03	24.82 ± 0.07	919	±	30
11/1 1/	00.05 1.0.05	04.05 1.0.00	020		22

- two massive galaxies: MW and M31
- ~tens of dwarfs

McConnachie+2005

Motivation: Why the Local Group?

- Local Group = local lab for dwarf galaxies/massive satellites, detailed star formation, etc.
- challenge: if we base our conclusions on observations of the Local Group, we need to know how typical it is

The connection to cosmology

The connection to cosmology

Question: Is the Local Group a weirdo?

Sampling the Local Group

- 1. Do a large cosmological simulation with sufficient resolution
- 2. Select groups of objects that are similar to the Local Group, dubbed Local Group Analogs
- 3. Investigate their statistical properties, e.g. their kinematic properties, mass assembly, etc. and compare to the Local Group

Sampling the Local Group

- 1. Do a large cosmological simulation with sufficient resolution
- 2. Select groups of objects that are similar to the Local Group, dubbed Local Group Analogs
- 3. Investigate their statistical properties, e.g. their kinematic properties, mass assembly, etc. and compare to the Local Group

Local Group Analogs

Our selection criteria

- Select galaxies at z=0 with a stellar mass of 5-7e10 Msol
- 2. Select pairs (= M31 and MW) of such galaxies with distance 0.5-1.5 Mpc
- Select only pairs that are isolated, i.e. no object with mass > 5e11 Msol within 3 Mpc and no cluster-like object within 10 Mpc

=> We end up with about <u>3000</u> objects

Halo mass function

Halo mass function

Halo Mass [M $_{\odot}$]

Halo mass function

Halo Mass [M $_{\odot}$]

Total mass and mass ratio

Total mass and mass ratio

shaded, grey: Constraints from Li & White 2007 shaded, red: Constraints from Pennarubia+2014

Total mass and mass ratio

Kinematics

Kinematics

Conclusions

- the vast size and versatility of the catalogs provide a great chance to investigate statistical properties of galaxies in a LambdaCDM Universe
- we find our stellar mass selected sample to have on average larger halo masses compared to a selection on halo mass and, consequently, larger group masses
- mass ratios and kinematic properties are consistent with observational evidence